423 research outputs found

    Micropower Design of an Energy Autonomous RF Tag for UWB Localization Applications

    Get PDF
    This paper describes the architecture and the micropower design criteria of a battery-less, energy autonomous, individually addressable RF tag for UWB localization applications, with a focus on baseband circuitry. The tag includes a UHF rectifier, power conversion and management circuits, an addressable wake-up radio module, a microcontroller-based control unit, and circuits for UWB localization. The proposed circuit is suitable for UWB localization either by using passive backscattering of received UWB pulses, or by using active UWB pulses generators. Power for operation is scavenged from a modulated UHF carrier also used for addressing purposes. The circuit is implemented on discrete components in a 3.12 cm2 PCB area. The circuit can wake-up from fully discharged states and operates at distances as high as 10.8 m from a 2W-ERP source in the UHF 865–868 MHz RFID band with a +1.8 dBi receiving antenna. The quiescent power consumption of the tag is 3.88 μW, and the average power consumption at an addressing and activation rate of one time per second is 4.7 μW. The effectiveness of UWB localization was tested in a localization system based on time-difference-of-arrival (TDOA) estimations, consisting of multiple UWB readers and UHF transmitters

    Fast and Reliable Modeling of Piezoelectric Transducers for Energy Harvesting Applications

    Get PDF
    The paper presents a fast and reliable model identification technique for piezoelectric transducers based on an equivalent electromechanical circuit easily implementable on SPICE-like simulation tools. Model parameter extraction is simple and requires just standard and inexpensive laboratory equipment. Indeed, the equivalent circuit representation permits the evaluation of the response of a real energy harvesting system, where the electronic load is a synchronized switching converter which usually causes a significant feedback on the mechanical part of the system during energy extraction. Both simulation and measurements show that the damping effect is particularly important near resonance, where the adopted model is able to fit the experimental data and provides a more realistic description of the behavior of the system

    Photochemical and thermal degradation of a naturally occurring dye used in artistic painting. A chromatographic, spectrophotometric and fluorimetric study on saffron

    Get PDF
    Saffron is a yellow substance which is extracted from the stigmas ofCrocus sativus L. and is used in painting, cooking and medicine. In this paper six components (transandciscrocins) with carotenoid structures were separated from natural saffron by HPLC and were characterised by their absorption and emission spectra. Photochemical and thermal processes which degrade the dye were also investigated. The effect of light promoted thecis⇄transisomerization, while the thermal effect detached the glycosyl moieties

    A 32 mV/69 mV input voltage booster based on a piezoelectric transformer for energy harvesting applications

    Get PDF
    This paper presents a novel method for battery-less circuit start-up from ultra-low voltage energy harvesting sources. The approach proposes for the first time the use of a Piezoelectric Transformer (PT) as the key component of a step-up oscillator. The proposed oscillator circuit is first modelled from a theoretical point of view and then validated experimentally with a commercial PT. The minimum achieved start-up voltage is about 69 mV, with no need for any external magnetic component. Hence, the presented system is compatible with the typical output voltages of thermoelectric generators (TEGs). Oscillation is achieved through a positive feedback coupling the PT with an inverter stage made up of JFETs. All the used components are in perspective compatible with microelectronic and MEMS technologies. In addition, in case the use of a ∼40 μH inductor is acceptable, the minimum start-up voltage becomes as low as about 32 mV

    Design of low-voltage integrated step-up oscillators with microtransformers for energy harvesting applications

    Get PDF
    This paper describes the modeling of startup circuits in battery-less micropower energy harvesting systems and investigates the use of bond wire micromagnetics. The analysis focuses on step-up Meissner oscillators based on magnetic core transformers operating with input voltages down to ≈100 mV, e.g. from thermoelectric generators. As a key point, this paper examines the effect of core losses and leakage inductances on the startup requirements obtained with the classical Barkhausen criterion, and demonstrates the minimum transconductance for oscillations to occur. For validation purposes, a step-up oscillator IC is fabricated in a STMicroelectronics 0.32 μm technology, and connected to two bond-wire microtransformers, respectively, with a 1:38 MnZn ferrite core and with a 1:52 ferromagnetic low-temperature co-fired ceramic (LTCC) core. Coherently with the proposed model, experimental measurements show a minimum startup voltage of 228 mV for the MnZn ferrite core and of 104 mV for the LTCC core

    Organic colorants based on lac dye and brazilwood as markers for a chronology and geography of medieval scriptoria: a chemometrics approach

    Get PDF
    CORES-PD/00253/2012 PD/BD/105895/2014 SFRH/BD/148729/2019 PTDC/LLT-EGL/30984/2017 UIDB/50006/2020 UIDP/50006/2020This work presents the first proof of concept for the use of molecular fluorescence signatures in medieval colours based on lac dye and brazilwood lake pigments. These two important medieval dyes were tested as markers using their UV–Visible emission and excitation spectra. These medieval paints had been previously fully characterized through a multi-analytical approach. In this work, molecular fluorescence spectra were acquired in manuscripts dating from 12th to 15th c., which were produced in monastic scriptoria or workshops. First, the spectral distribution and relative intensity of the emission and excitation spectra were discussed in detail by comparison with reference compounds, including reproductions of paints based on medieval technical texts. It was possible to group the spectra according to recipe specificities. Then, statistical methods (principal component analysis and hierarchical cluster analysis) were applied to the same fluorescence spectra and the generated clusters were compared with the previous ones. Principal component analysis was initially employed to eliminate redundancy in fluorescence data, so minimizing bias on the hierarchical cluster analysis results. Except for some misplaced spectra, the placement of samples per group was confirmed. The outliers resulted from either a poor signal to noise ratio or occurred because certain paints were unique, such as the colour produced by mixing lac dye and brazilwood, which was found in manuscripts from the Alcobaça monastic scriptorium. Previously, by using infrared or Raman spectroscopies, only lac dye could be detected. Notably, these paints compare well with a recipe that was reproduced from the text by Jean Le Begue, in which both dyes were required.[Figure not available: see fulltext.]publishersversionpublishe

    Real-time gas mass spectroscopy by multivariate analysis

    Get PDF
    Early and significant results for a real-time, column-free miniaturized gas mass spectrometer in detecting target species with partial overlapping spectra are reported. The achievements have been made using both nanoscale holes as a nanofluidic sampling inlet system and a robust statistical technique. Even if the presented physical implementation could be used with gas chromatography columns, the aim of high miniaturization requires investigating its detection performance with no aid. As a study case, in the first experiment, dichloromethane (CH2Cl2) and cyclohexane (C6H12) with concentrations in the 6-93 ppm range in single and compound mixtures were used. The nano-orifice column-free approach acquired raw spectra in 60 s with correlation coefficients of 0.525 and 0.578 to the NIST reference database, respectively. Then, we built a calibration dataset on 320 raw spectra of 10 known different blends of these two compounds using partial least square regression (PLSR) for statistical data inference. The model showed a normalized full-scale root-mean-square deviation (NRMSD) accuracy of [Formula: see text] and [Formula: see text] for each species, respectively, even in combined mixtures. A second experiment was conducted on mixes containing two other gasses, Xylene and Limonene, acting as interferents. Further 256 spectra were acquired on 8 new mixes, from which two models were developed to predict CH2Cl2 and C6H12, obtaining NRMSD values of 6.4% and 13.9%, respectively

    Applications to cancer research of "lab-on-a-chip" devices based on dielectrophoresis (DEP).

    Get PDF
    The recent development of advanced analytical and bioseparation methodologies based on microarrays and biosensors is one of the strategic objectives of the so-called post-genomic. In this field, the development of microfabricated devices could bring new opportunities in several application fields, such as predictive oncology, diagnostics and anti-tumor drug research. The so called "Laboratory-on-a-chip technology", involving miniaturisation of analytical procedures, is expected to enable highly complex laboratory testing to move from the central laboratory into non-laboratory settings. The main advantages of Lab-on-a-chip devices are integration of multiple steps of different analytical procedures, large variety of applications, sub-microliter consumption of reagents and samples, and portability. One of the requirement for new generation Lab-on-a-chip devices is the possibility to be independent from additional preparative/analytical instruments. Ideally, Lab-on-a-chip devices should be able to perform with high efficiency and reproducibility both actuating and sensing procedures. In this review, we discuss applications of dielectrophoretic(DEP)-based Lab-on-a-chip devices to cancer research. The theory of dielectrophoresis as well as the description of several devices, based on spiral-shaped, parallel and arrayed electrodes are here presented. In addition, in this review we describe manipulation of cancer cells using advanced DEP-based Lab-on-a-chip devices in the absence of fluid flow and with the integration of both actuating and sensing procedures

    An Ultra-wideband Battery-less Positioning System for Space Applications

    Full text link
    An ultra-wide bandwidth (UWB) remote-powered positioning system for potential use in tracking floating objects inside space stations is presented. It makes use of battery-less tags that are powered-up and addressed through wireless power transfer in the UHF band and embed an energy efficient pulse generator in the 3-5 GHz UWB band. The system has been mounted on the ESA Mars Rover prototype to demonstrate its functionality and performance. Experimental results show the feasibility of centimeter-level localization accuracy at distances larger than 10 meters, with the capability of determining the position of multiple tags using a 2W-ERP power source in the UHF RFID frequency band.Comment: Published in: 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA
    • …
    corecore